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industry's efforts to advance energy management as measured by the updated ENERGY STAR Energy Performance
Indicator (EPI). A stochastic single-factor input frontier estimation using the gamma error distribution is applied to
separately estimate the distribution of the electricity and fossil fuel efficiency of assembly plants using data from
2003 to 2005 and then compared to model results from a prior analysis conducted for the 1997–2000 time period.
This comparison provides an assessment of how the industry has changed over time. The frontier analysis shows a
modest improvement (reduction) in “best practice” for electricity use and a larger one for fossil fuels. This is accom-
panied by a large reduction in the variance of fossil fuel efficiency distribution. The results provide evidence of a shift
in the frontier, in addition to some “catching up” of poor performing plants over time.
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1. Introduction

The environmental policy implications of lower energy use have led
to the development of voluntary government programs for energy effi-
ciency, particularly in the absence of, or supplement to, other types of
climate policy. These programs arose in the early 1990s (Storey et al.,
1997) and expanded in the US with the introduction of EPA ENERGY
STAR for Industry (Environmental Protection Agency, 2013). In 2001,
EPA created a new partnership as part of the ENERGY STAR buildings
program (originally launched in 1999), the ENERGY STAR Focus on En-
ergy Efficiency in Industry (hereafter “the Focus”). The initiative identi-
fied barriers to energy efficiency, developed approaches for removing
these barriers, and facilitated a support group of energy professionals
within the industry. EPA's goal was to cultivate energy management
functions within companies. EPA approached senior executives to es-
tablish the business case for energy management, secure assignment
of a responsible energy director for each corporation, and help the com-
panies build the necessary internal supporting functions and networks.
ghts reserved.
ENERGY STAR energy management tools such as program evaluation
checklists, energymanagement guidelines, and information on forming
energy management teams guided refinement of the energy manage-
ment programs in participating companies. Voluntary programs like
ENERGY STAR may require company commitments to specific energy
reduction targets, or “energy management” generally. For example, a
company joining ENERGY STAR as a Partner agrees to1

• Measure, track, and benchmark energy performance
• Develop and implement a plan to improve energy performance,
adopting the ENERGY STAR strategy

• Educate your staff and the public about your partnership and achieve-
ments with ENERGY STAR.

Recently the International Standards Organization (ISO) has
established requirements for “establishing, implementing, maintaining
and improving an energy management system, whose purpose is to en-
able an organization to follow a systematic approach in achieving contin-
ual improvement of energy performance, including energy efficiency,
1 See http://www.energystar.gov/buildings/about-us/become-energy-star-partner/
online-partnership-agreement for the complete process.

http://dx.doi.org/10.1016/j.eneco.2013.11.008
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3 Throughout thepaperwewill refer to the plant level as theunit of observation, but the
concept may also apply to more aggregate levels like firms and industries, and disaggre-
gate process units.

4 ISO uses the term Energy Performance Indicator to refer to baselines. However, ISO
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energy use and consumption” as ISO 50001, which largely formalized the
first two elements of the ENERGY STAR partner agreement (International
Organization for Standardization, 2011).

TheUS based voluntary energy programs typically involve some type
of government recognition for “good” performance. ENERGY STAR pro-
vides recognition for plants that reduce energy (ENERGY STAR Chal-
lenge for Industry) or that are in the upper quartile of performance
(ENERGY STAR Certification). There is also a corporate level award for
overall achievements (ENERGY STAR Partner of the Year). Similar DOE
programs such as Superior Energy Performance (SEP) (Therkelsen
et al., 2013), established in 2005, use the third party ISO 50001 certifica-
tion as a core requirement and set various levels of performance to
achieve formal recognition. International programs may have binding
agreements for reductions in energy use or intensity in exchange for a
variety of other incentives such as audits and assessments, financial as-
sistance and incentives, exemption from regulation and taxes, in addi-
tion to government and public recognition (Price et al., 2003).

In addition to themanagement tools and facilitation of networking be-
tween the energy directors, ENERGY STAR developed industry specific
tools, which include the Energy Performance Indicator (EPI), a stochastic
frontier inter-plant energy benchmarking tool. Boyd et al. (2008) provide
a discussion of the evolution of the EPI approach. Boyd and Tunnessen
(2013) provide a summary of the industries, approaches, and results of
the EPI benchmarking to date. The EPI is developed for and reviewed by
knowledgeable representatives from companies that participate in the
Focus. Since the motor vehicle industry focus and corresponding assem-
bly plant EPI development began over ten years ago (Boyd, 2005a,
2005b), a second version of the EPI was prepared and made available to
the public by EPA. Re-estimating the motor vehicle assembly EPI and
comparing the two versions allow for the improvement in the industry
to be quantified. This contributes to a greater understanding of how the
industry has changed over time.2

This paper discusses the data and the underlying stochastic frontier
analysis used to estimate version two of the ENERGY STAR EPI formotor
vehicle assembly plants. The next sections discus themotivation behind
measuring efficiency, the data and specification used in this version, and
how the parameter estimates of the two models have changed over
time; in particular the treatment of climate impacts fromplant locations
and from capacity utilization. The paper then computes several mea-
sures, based on the two models to illustrate how the distribution of en-
ergy efficiency has shifted over time.

2. Energy performance indicator

Efficiency is ameasure of relative performance; but relative towhat?
Defining energy efficiency requires a choice of a reference point against
which to compare energy use. The difference between the observed
level and potential level of performance has been called the “efficiency
gap.” Jaffe and Stavins (1994) discuss a range of concepts from which
to define “potential,” including economic, technical, social and hypo-
thetical. The first market failure they identify that leads to an efficiency
gap is lack of information. It is the lack of information regarding eco-
nomic potential for lower energy use that is the focus here. In other
words, we are interested inmeasuring economic potential based on “ob-
served best practice”, which is by definition economically feasible. By
providing this information, ENERGY STAR hopes to lower the barrier
to more widespread adoption of economic potential for lower energy
use. The reference point for economic potential (observed best practice)
depends, in part, on the reason for measuring efficiency as well at the
available information to create a reference. Generally, the Ceteris Paribus
principle (“all other things being equal or held constant”) is usually de-
sired in creating the reference point, or benchmark. From a practical
perspective there is a hierarchy of measures and methods by which
2 A similar analysis, but for the cement industry, is detailed in Boyd and Zhang (2012)
and Boyd et al. (2011).
one can “hold constant” things that influence the level of energy use
that are not energy efficiency. The first is a measure of production activ-
ity. This ismost commonly done by computing the ratio of energy use to
production output, a measure of energy intensity. Energy intensity is a
commonmetric that controls for changes in production and is common-
ly confusedwith energy efficiency, as in the statement “the plant's ener-
gy efficiency has improved based on the observation that the energy
intensity has declined”. This type of statement brings us to the second
way that one may approach the ceteris paribus principle for measuring
efficiency, comparing energy intensity a particular plant, firm, or indus-
try to itself over time. This approach is a plant (firm, etc.)3 specific base-
line comparison, or intra-plant efficiency benchmark. ISO 50001
recommends developing such a baseline for measurement and track-
ing.4 Baselines have the advantage of controlling for some plant specific
conditions that do not change during the comparison period. The next
level of this ceteris paribus principle is an inter-plant comparison that
may include a variety of factors that influence energy use, but may not
be viewed as efficiency. Factors may include difference in the types of
product and materials used, as well as location specific conditions.
Inter-plant comparisons within an industry also get us closer to the no-
tion of an observed best-practice benchmark of economic energy effi-
ciency, since by definition there is some group of plants that are the
best performers.

To measure energy intensity you need a measure of energy in the
numerator, and a measure of output for the denominator. Murray
(1996) raises issues about both the numerator and dominator. For the
numerator in our case we use total purchased energy, defined as the
net Btu total of the fuels (Btu) and electricity (kWh). The choice of the
denominator is a major issue for measuring intensity. Freeman et al.
(1997) show that industry level trends in energy intensity based on
value, both total and value added, can differ dramatically from those
based on physical quantities. At the simplest level value, the value of
output is simply price times physical quantity—so pricemovements ac-
count for these differences. Freeman et al. observe

“For an industry producing a single, well-defined, homogeneous
good, it is relatively easy to construct an accurate price index. Most
industries, however, produce many poorly-defined, heterogeneous
goods. For a variety of reasons, themore diverse the slate of products
produced by an industry, the more difficult it becomes to construct
an accurate price index. …the accuracy of industrial price indexes
is of extreme importance to industrial energy analysts and policy
makers who use value-based indicators of energy intensity.”

Out of 450 Census 4-digit Standard Industrial Classifications (SIC)
Freeman et al. analyze physical output data for only 14. This choice
may be driven by the available data, but is in part based on the diverse
types of production that may be included within the Census classifica-
tions. For physical production to be meaningful it needs to be at a high
level of industry homogeneity. For example, the “Dairy” industry pro-
duces many products that could not be aggregated, but “Fluid Milk”
might.

Freeman et al. employ a commonly used approach by comparing en-
ergy intensities over time within specific sectors, i.e. industry level in-
tensity baselines. Companies commonly employ plant level energy
intensity baselines to assess performance. EPA ENERGY STAR Challenge
for industry5 is also based on a plant level intensity baseline. Specifically,
“The Challenge for Industry recognizes industrial sites that improve
their energy efficiency by 10% within 5 years.” A site with a 10%
uses the acronym EnPI, to differentiate it from the Energy Star EPI.
5 EPA web site —http://www.energystar.gov/index.cfm?c=industry_challenge.

industry_challenge.

http://www.energystar.gov/index.cfm?c=industry_challenge.industry_challenge)
http://www.energystar.gov/index.cfm?c=industry_challenge.industry_challenge)


6 Other criteria also apply. See http://www.energystar.gov/index.cfm?c=industry.bus_
industry_plants formore information. For a list of plants that have received certification go
to http://www.energystar.gov/buildings/about-us/find-energy-star-certified-buildings-
and-plants/registry-energy-star-certified-buildings.

7 5th annual Motor Vehicle Assembly Energy Star Focus meeting, World Energy Engi-
neering Congress, Washington DC, 2006.

8 Data are collected directly from Energy Star Focus participant and are covered by a
non-disclosure agreement with each participating company and Duke University.

83G.A. Boyd / Energy Economics 42 (2014) 81–87
improvement in energy efficiency is further defined as “Sites that
achieve a 10 percent reduction in energy intensity within 5 years.”
The logic behind this approach is clear. Over a relatively short period
of timeproductionmay vary (even trendup/down) but other plant con-
ditions may not change, so the intensity baseline is a measure of effi-
ciency improvement. The intensity baseline does achieve one type of
relative performance (what the plant did 5 years ago) while “holding
constant” production variation by normalizing energy use in the form
of an intensity. Comparing a plant to itself over time can control for
other plant specific characteristics that are unchanged over the time pe-
riod, but still does not provide any information about the economic po-
tential or the efficiency gap.

Comparing plants within an industry using a stochastic frontier is
one approach to assessing a form of economic potential. By definition,
at least one plant in the industry represents the observed “best prac-
tice”. The frontier approach estimates the best practice levels of energy
use, based on observed performance. The difference between estimated
best practice and actual observed practice is the basis for an empirical
efficiency distribution. In a seminal paper on measuring production ef-
ficiency, Farrell (1957) identifies two possible choices for information
on this benchmark; “Although there are many possibilities, two at
once suggest themselves—a theoretical function specified by engineers
and an empirical function based on the best results observed in prac-
tice.” Huntington (1994) discusses this same issue in the context of
top-down and bottom up energy models.

The concept used here for the benchmark is the second approach
suggested by Farrell, an empirical estimate of the best observable per-
formance, or “best practice,” and an empirical distribution of efficiency,
based on the difference between estimated best practice and observed
practice. The EPI is a stochastic frontier model of plant level energy
use that enables comparison across facilities with different levels and
types of production related activities that influence energy use. The sto-
chastic frontier provides an econometric approach to estimating the
“best”, i.e. lowest, energy usewithin the industry; allowing a separation
of an estimate of the frontier from an estimate of efficiency, i.e. how far
each plant is relative to the frontier. Following Boyd (2008), this paper
estimates an observed best practice, energy factor requirements func-
tion, which is equivalent to a sub-vector input distance function for en-
ergy, similar in concept to that proposed by Farrell, while controlling for
output and other plant characteristics. For a complete review of the
frontier approach see Murillo-Zamorano (2004).

Of course, observed best practice is only an estimate of economic po-
tential to the extent that plant(s) in the sample achieve this level. On the
one hand, the best observed performance may be taken as evidence of
economic potential, since there must be a “best performer” in any in-
dustry. On the other hand, this analysis is of data at the whole plant
level, so there may be plants that achieve “full” economic potential in
only some energy service areas, but not all. Thismeans that this analysis
may not completely capture “full” economic potential at the detailed
energy services level, but is based on the “best observed” realization of
this concept of efficiency. However, the frontier approach is an improve-
ment over statistical approaches based on average performance, e.g.
OLS.

The difficultywith applying an industry level inter-plant benchmark
is controlling for inter-plant differences other than production volume.
While the things that differ between plants are numerous, the primary
difference that has the most impact on energy fall into the following
categories.

• Production level and mix
• Process inputs, e.g. vertical integration
• Size—Physical or productive capacity and utilization rates
• Climate (or other location specific factors).

These factors are all based on the technical or production aspects of
energy use. The most obvious economic influence “missing” from the
above list is input prices. The relative price of energy and the cost of
capital are critical to economic decisions regarding the implementation
of energy using (saving) technologies. Labor costs may also influence
decisions on whether personnel are dedicated to the management of
energy. This approach only examines production related factors in de-
veloping the inter-plant benchmark, i.e. takes a production function
rather than cost function approach to defining efficiency. This does ig-
nore differences between plants that arise from difference in the afore-
mentioned prices. This is mitigated somewhat by considering plants
located in the US (controlling for the larger global variation in prices
that are often due to energy taxation) over short time periods when
prices are relatively stable. This also avoids the more difficult question
about what is the “correct” cost of capital. Plants may internally apply
different costs of capital due to the financial conditions of the firm (i.e.
those based on external capital markets) and the practices of internal
capital budgeting, which may include capital rationing and setting hur-
dle rates. Jaffe and Stavins make several distinctions between different
definitions of economic potential, one of which assumes that practices
of capital budgeting do not bind the technology choices, i.e. decisions
are based solely on market returns. However, observed practice likely
includepractices like capital rationing. From that perspective the bench-
mark developed here is technically feasible based on observed produc-
tion practices, but include the possibility of rationing relative to
industry specific practices and do not account for regional variability
in energy prices. In this sense, these estimates may further depart
from an estimate of “full” economic potential.

The next sections describe the history of the model development,
the underlying data and stochastic frontier analysis, and estimates of
the shift in the energy intensity distribution over time.

2.1. Stochastic frontier modeling of auto assembly plant data

Version one of the EPI auto assemblymodel; its background,motiva-
tion, data, and results, are described in Boyd (2005a, b). Companies in
the Focus provided data for the years 1998–2000 to conduct the analysis
for version one. The development process involved a period of testing
and use that lead to eventual acceptance of themodel by industry ener-
gymanagers as a useful tool for benchmarking plant performance (Boyd
et al., 2008). Based in part on this acceptance by the industry, EPA began
using this model to measure and to recognize superior performance
awarding the manufacturing plant ENERGY STAR to plants that are in
the top quartile of energy efficiency.6 Industry requested the EPA to up-
date the analysis7 so that the model would reflect more recent levels of
energy efficiency and agreed to voluntarily provide the data8 to perform
the analysis. Data on energy use, production, capacity, and vehicle size,
was received from 33 plants operating in the United States from six
companies; Ford, General Motors, Honda, Nissan, Subaru, and Toyota.
In the context of the four types of variables that one might consider as
identified above, i.e. production level andmix, process inputs, e.g. verti-
cal integration, physical or productive capacity and utilization rates, and
climate (or other location specific factors) this study accounts for all
four. Production is in terms of vehicles, and mix is accounted for by ve-
hicle size (wheel base). Only data on bodyweld, paint and assembly are
included in the data. Some plants do include stamping and other oper-
ations, while others do not. Those plants that do have stamping and
parts fabrication have removed the energy related data for those pro-
cess stages, making all plants consistent in that regard. Capacity utiliza-
tion is also included in the analysis, as is climate. Based on the zip code
location, the annual heating and cooling degree days (HDD and CDD

http://www.energystar.gov/index.cfm?c=industry.bus_industry_plants)
http://www.energystar.gov/index.cfm?c=industry.bus_industry_plants)
http://www.energystar.gov/buildings/about-us/find-energy-star-certified-buildings-and-plants/registry-energy-star-certified-buildings)
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Table 1
Summary statistics for 2005.

Variable Mean Std. Deviation Lower decile Upper decile

HDD 4764 1532 1937 7052
CDD 1413 507 703 2999
Wheel base (inches) 121 16.5 103 157
Production (vehicles per year)a 213,128 68,219 142,600 260,760
Capacity (vehicles per year) 223,806 45,271 169,090 256,200
kWh per vehicle 641 210 416 887
MMBTU per vehicle 4.63 2.3 2.52 7.36

a Two plants operate as separate entities under one roof. These plants are treated as two separate plants for purposes of measuring production and capacity for this and the previous
analysis.

Table 2
Electricity energy model estimates.

Variable Estimate Standard error t-Ratio

Constant −91.8485 105.3997 −0.871
A2003 23.92846 9.843368 2.431
A2004 10.784 2.545143 4.237
WBASE 2.032419 0.401544 5.062
HDD 163.0618 36.33689 4.487
HDD2 −15.1721 4.041763 −3.754
Util −112.544 59.12416 −1.904
CDD −223.899 170.7279 −1.311
CDD2 86.61689 60.1926 1.439
AC 124.5492 108.496 1.148
Θ 0.00331 0.000819 4.041
P 0.65475 0.157012 4.17
σv 0.110233 2.295552 0.048
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respectively) from an EPA ENERGY STAR database were merged with
the industry provided data. Data for three years 2003–2005 were in-
cluded in the analysis. Summary statistics for 2005 are shown in Table 1.

Boyd (2008) provides the background for use of stochastic frontier
to estimate a directional distance function based, energy factor require-
ments equation, using the corn refining industry as an example. For pur-
poses of this analysis, the same basic functional form and distributional
assumptions used in Boyd (2005a) are followed. A parametric frontier
model is chosen for this application over alternative non-parametric
DEA approaches. The ENERGY STAR program encourages companies
to use the EPI in an out-of-sample basis; distributing the results of this
analysis in the form of a spreadsheet tool.9 Since the data are confiden-
tial and cannot be included in such a spreadsheet, but parameter esti-
mates can, the parametric form of efficiency analysis is chosen.

One difference between version one and the specification used in
this paper is the annual fixed effects, to capture time varying shifts in
the frontier from the earlier years relative to the last year, 2005. In the
development of both versions of the model, linear and quadratic
terms for utilization, HDD, and CDDwere also tested. The logic for a pos-
sible non-linear impact of utilization on energy intensity is based on the
fact that some energy is quasi-fixed and will be spread over more vehi-
cles as utilization rises. Similarly, the impact of assembly plant heating
and cooling loads from weather need not be linear. At some tempera-
tures, the marginal impact of getting colder or warmer may a differen-
tial impact on the energy demand for the heating ventilation and air
conditioning (HVAC) units. The specification in this paper takes a purely
empirical approach to potential non-linearity. If the second order terms
are insignificant they were dropped from the model and the most par-
simonious version was selected. Slightly different approach for electric-
ity and fuel use are employed regarding CDD. Only plantswhich provide
air conditioning10 for worker comfort are likely to have energy loads
9 See http://www.energystar.gov/buildings/tools-and-resources/automobile-assembly-
plant-epi.
10 The industry prefers the term “air tempering,” since all plant “condition” the air to
control humidity, but not all “temper,” i.e. cool the air for comfort. Many plants located
in “northern” climates do not provide cooling.
that are sensitive to summer temperatures, so a dummy variable to dif-
ferentiate between such plants is used to capture this effect.

The preferred specification of the equation for electricity is

Ei
.

Yi
¼ Aþ A2003 þ A2004 þ β1WBASEi þ β2HDDi þ β3Utili þ β4Utili

2

þβ5CDDi þ β6CDDi
2 þ β7ACi þ ui−vi

ð1Þ

where

E total site electricity use in kWh;
Y number of vehicles produced;
Util plant utilization rate, defined as output/capacity;
HDD thousand heating degree days for the plant location and year;
CDD thousand cooling degree days for the plant location and year

if the plant is air conditioned and zero otherwise;
AC dummy variable equal to one if the plant is air conditioned

and zero otherwise
WBASE wheelbase of the largest vehicle produced; and
β vector of parameters to be estimated.

The variable vi is the statistical random error and is normally distrib-
uted as N(0, σv

2). The variable ui is the estimate of inefficiency. Note that
in this form of the frontier, ui is added to the RHS, reflecting the fact that
actual energy use is expected to be higher than best practice. The effi-
ciency term ui is assumed to be distributed as a gamma distribution,
summarized by the rate parameter, Θ, and shape parameter, P. The
gamma distribution and density function are

f uð Þ ¼ θP=Γ Pð Þ
h i

e−θuuP−1
;u;P; θN0

and

F xð Þ ¼
Zx

0

f uð Þdu
ð2Þ

respectively. This distribution provides a more flexible parameteriza-
tion of the distribution than either exponential or half normal, which
are commonly used for the estimation of stochastic frontier models.
The gamma distribution is very flexible and can collapse to the expo-
nential distribution (P = 1), Chi2 (Θ = 2), and other distributions
with a one-sided skewness. Simulated maximum likelihood was used
to estimate the parameters (Greene, 2003). The estimated parameters
of the model are shown in Table 2. All parameters except for those var-
iables associated with cooling, i.e. CDD and AC, are statistically signifi-
cant at the 1% level or greater in a two-tailed test.11 The small
estimate of σv implies that the stochastic component is small and that
most departures from the frontier are attributable to the inefficiency
error term.
11 The cooling degree variables are included in the model since controlling for those
plants with air conditioning was felt to be important to industry reviewers who provided
the data.
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Table 3
Fuel energy model estimates.

Variable Estimate Standard Error t-Ratio

Constant −0.526 1.40 −0.37
WBASE 0.019 0.008 2.48
Util −0.720 0.62 −1.15
HDD 0.439 0.14 3.07
Θ 0.390 0.18 2.14
P 0.667 0.37 1.81
σv 0.676 0.21 3.28

Table 4
Comparison of electricity energy model estimates.

Version one Version two

Variable Estimate Standard error Estimate Standard error

Constant 369.39 86.89 −91.84 105.39
A2003 23.92 9.84
A2004 10.78 2.54
WBASE 2.77 0.01 2.03 0.40
HDD −48.41 26.26 163.06 36.33
HDD2 4.79 2.60 −15.17 4.04
Util −138.61 34.31 −112.54 59.12
CDD −59.32 5.23 −223.89 170.72
CDD2 41.91 0.99 86.61 60.19
AC 124.54 108.49
Θ 0.0028 0.00006 0.00331 0.000819
P 0.5424 0.116 0.65475 0.157
σv 0.000004 0.00048 0.110233 2.295

Table 5
Fuel energy model estimates.

Version one Version two

Variable Estimate Standard error Estimate Standard error

Constant 3.827 0.837 −0.526 1.40
WBASE 0.00322 0.000061 0.019 0.008
Util −6.788 1.280 −0.720 0.62
Util2 2.399 0.622
HDD −0.545 0.121 0.439 0.14
HDD2 0.11 0.00131
Θ 0.268 0.00694 0.390 0.18
P 0.724 0.144 0.667 0.37
σv 0.000701 0.00698 0.676 0.21

Table 6
Average change in frontier energy use “best practice” implied by the difference between
version one and version two.

Electric
(kwh/unit)

Fuel
(MMBtu per unit)

Frontier per unit change 15.5 0.66

85G.A. Boyd / Energy Economics 42 (2014) 81–87
The preferred specification of the equation for fossil fuel is

F
.

Yi
¼ Aþ β1WBASEþ β2Utilþ β4HDDþ ui−vi ð3Þ

where

F total site fossil fuel use in 106 Btu.

All other variables are defined with u and v distributed as described
above. The parameter estimates of themodel are shown in Table 3. Only
the parameters for wheel base and HDD are statistically significant at
the 1% level, or lower, in a two-tailed test. The size of σv is larger than
for the electricity equation, which suggests that the fuel model is esti-
mated with larger stochastic component, but most departures are still
attributable to inefficiency.

The dummy variables are included to control for common industry
effects for each year, presumably shifts that improve average efficiency
over time. For electricity these estimates suggest that the frontier elec-
tricity use in 2003 and 2004 was higher by 24 and 11 kWh per vehicle,
respectively.While the estimates appear to show a pattern of higher en-
ergy use in 2003 relative to 2004, the differences between the two years
are not statistically significant. The non-linear relationship for HDD im-
plies that increased HDD impacts electricity use positively, but at a
diminishing rate as HDD approaches the upper quartile, where the qua-
dratic reaches its maximum. While not significant, the non-linear rela-
tionship for CDD implies that warm temperatures only adds to the
electricity loads in the plants located in the warmest of climates that
provide cooling, since the quadratic function is fairly “flat” over most
of the lower quartiles of the data.12 For fuel use, initial estimates suggest
that the frontier energy use in 2003 and 2004 was lower, not higher.
These fixed effects were not significant and were dropped from the es-
timation. The second order variables for utilization and HDD were not
significant and were dropped. The model estimates for the preferred
specification are shown in Table 3.

Since this is an update of version one of the model estimated using
1998–2000 data it is useful to compare the two versions to see how
much the coefficients had changed. The model based on the 1998–
2000 data will be labeled version one and the model specified in this
paper as version two. Table 4 compares the estimates of the two elec-
tricity models. While the estimates for wheel base and utilization are
quite similar the climate variables appear very different. This is due in
part to the correlation between HDD and CDD and the impact both of
these variables have on electricity consumption in the quadratic specifi-
cation. The slope of non-linear CDD function, evaluated at themedian of
the data, is 0.018 kWh/vehicle for every increase in degree day. The
slope increases as CDD increases. Table 5 compares the estimates of
the two fuel models. The utilization coefficients show the most change
between the two versions. If we look at the slope of the curve evaluated
at 100% utilization we find that every 1% increase in utilization de-
creases energy per vehicle by 0.02 MMBtu in version one and only
0.007 in version two. In version two the second order quadratic term
was not significant, implying that the linear form with the smaller
12 Some type of piece-wise linear function could also beused to capture this, but the qua-
dratic form is more convenient.
impact on energy (0.007 vs 0.02) better describes current industry con-
ditions. This suggests that changes in energy practice have reduced the
impact of utilization on energy use per vehicle. Thismay result from im-
provements in shut-down procedures and other changes in energy
management.

2.2. Estimating the shift in the distribution of energy intensity

Measures of efficiency defined by versions one and two for both fuel
and electricity are computed for each plant in the dataset used to devel-
op version two (i.e. the 2003–2005 data). Denote fkj (Xi) as the predicted
best practice energy intensity for the ith plant with characteristics X, for
model version j, and fuel type k. Efficiency is computed by first
subtracting the predicted values from both versions of the models for
each fuel type from actual energy use.

Ei
Yi

− f jk Xið Þ ¼ ui−vi:

Since we are interested in the estimate of efficiency, ui, but can only
observe ui − vi the conditional JMLS estimator proposed by Jondrow
et al. (1982) is used. Multiplying the JMLS estimate of efficiency by
total vehicle production results in a plant level estimate of energy
inefficiency.
% frontier change 2% 12%
Reduction in frontier CO2

emissions (106 lbs)
164 531



Table 7
Average change in inefficiency “best practice” implied by the difference between version
two and version one.

Electric
(kwh/unit)

Fuel
(MMBtu per unit)

Mean version one 194 2.70
Variance version one 69,184 10.1
Mean version two 198 1.71
Variance version two 59,761 4.4
Change in CO2 emissions due to
efficiency (106 lbs)

−42 809
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Fig. 1. Comparison of the distribution of total source energy intensity.14

13 The vertical axis is essentially a percentile, but follows the ENERGYSTARconvention of
labeling the lowest energy use with the highest percentile (100). ENERGY STAR refers to
this as the Energy Performance Score.
14 Source energy is an aggregate that includes average power conversion and transmis-
sion losses for electricity, i.e. converts kWh to Btu using the US system average conversion
and loss rate of 11,396 Btu/kWh.
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If the estimate of best practice energy use is smaller using version
two than when using version one then the shift in the frontier reflects
an improvement in energy performance. The average change in the
frontier based on subtracting version one from version two, for both en-
ergy types evaluated at every plant in the database, is shown in Table 6.
Multiplying the average change in estimated best practice fuel and elec-
tricity intensity by the CO2 emission factor for fuels (natural gas) and
electricity (using national average emission rates), respectively, and
then by the total production of all plants in this study yields an estimate
of the carbon emission change that has resulted from the improvement
in industry best practices and technology.

The model comparison can also provide information on whether a
plant is keeping pace with these changes, catching up, or falling behind
by comparing the estimated parameters of the gamma distributed effi-
ciency term. Table 7 translates the parameters of the gamma distribu-
tion into a more familiar mean and variance. The mean inefficiency
(amount by which the energy use of the typical plant fell short of best
practice) rose slightly and the variance declined. The difference in the
mean is very small but the reduction in the variance suggests that the
wide range of performance has declined. A more dramatic story
emerges for fuel use. Mean inefficiency is 1.0 MMBtu per vehicle
lower and the variance is reduced by more than half. Computing the
change in CO2 in the samemanner as the change in the frontier practices
results in an estimate of the total CO2 implication of the change in effi-
ciency, which is slightly larger than the change in the frontier, 766 vs.
696 respectively. The total is 1462 million lbs of CO2.

The difference between the results for fuels vs. electricity is likely a
combination of efficiency improvements in each, but also some anec-
dotal evidence of substitution of fuel processes for electricity based pro-
cesses. The main shift in energy processes is likely in paint booth
technology, which is the dominant energy user in assembly plant (see
Galitsky and Worrell, 2003). Some examples of this substitution are
the shift from ovens to UV paint curing and the decline in the use of
thermal oxidizers. These technology substitutions are not likely to be
energy price driven, but are to meet environmental requirements for
VOC emission control. An analysis of these process changes resulting
in substitution between fuel and electricity is beyond the scope of this
paper, but these types of technology trendsmean that the fuel and elec-
tricity specific estimates are conditional on other drivers for underlying
process change.

Another way to see how the distribution of energy intensity has
changed over time is to use each model to simulate the range of perfor-
mance for a hypothetical plant. Fig. 1 shows howeachmodelwould pre-
dict the simulated cumulative efficiency distribution, for a hypothetical
plant producing222,000 vehicleswith a 120 in.wheel basedper year, at
a line speed of 65 vehicles per hour. This hypothetical plant is located in
a climate that experiences an average of 3457 HDD and 1417 CDD per
year. In other words, if all plants in the industry were identical, then
this would be the distribution of total energy intensity. Plants to the
right are less efficient when compared to the performance represented
by the left most point on the curve. When we compare the cumulative
distribution from version one of the EPI, with a base year of 2000, to
that generated by version two, with the base year of 2005, we see that
the simulated distribution has shifted to the right.13 The best practice
(frontier), represented by the left-most portion of each curve, has
shifted less than the middle of the distribution. This shows that while
the best plants have only improved slightly, the new distribution is
steeper and has a shorter tail. This implies that the “pack” has made
progress in “catching up” with the industry leaders.

3. Conclusion

This paper describes the data and analysis to update the ENERGY
STAR Auto Assembly Manufacturing Plant EPI from the base year of
2000 to a base year of 2005. Periodic update of any manufacturing
plant EPI is needed to provide a useful management tool if the industry
performance is changing over time. The update process provides an es-
timate howmuch “the industry” has improved, in aggregate or on aver-
age. There are two sources of improvement, the changes in the industry
energy frontier, i.e. “best practices” and technology, and the changes in
efficiency, i.e. whether plants are catching up or falling behind. The re-
sults suggest that changes in efficiency have slightly outpaced changes
in the frontier. This effect is primarily manifesting itself in improve-
ments in fossil fuel use; changes in efficiency of electricity use have
been negligible. The combined effect when evaluated against the over
7 million vehicles produced in 2005 by the plants in our study implies
in a reduction of 1462 million lbs of CO2 attributable to changes in ob-
served industry energy efficiency practices.
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